钢结构应用主要有下列几个形式:
(1)工业厂房
吊车起重量较大或者其工作较繁重的车间的主要承重骨架多采用钢结构,结沟形式多为由钢屋架和阶形柱组成的门市钢架或排架,也有采用网架做屋盖的结构形式,随着压型钢板等轻型屋面材料的采用,轻钢结构工业厂房得到了迅速发展。其结构形式主要为实腹式变截面门式钢架。如:合肥彩虹公司屋架、合肥*二发电厂等
(2)可拆卸的结构
钢结构不仅质量轻,还可以用螺栓或其他便于拆装的手段来连接,因此非常适用于需要搬迁的结构。合肥市绝大多数工程活动房便是钢结构的。
(3)受动力荷载影响的结构
由于钢材具有良好的韧性,设有较大锻锤或产生动力作用的其他设备的厂房,即使屋架跨度不大,也往往由钢制成。对于抗震能力要求高的结构,采用钢结构也是比较适宜的。如合肥**中心的大悬臂钢网架,合肥火车站站台楼的钢架雨棚,都具有较高的抗风、抗震能力。
(4)容器和其他结构
冶金、是由、化工企业中大量采用钢板做成的容器结构,包括油罐、高炉、热风炉等此外,经常使用的还有管道支架、锅炉支架等其他钢构筑物,海上采油平台也大都采用钢结构。
(5)组合结构
钢构件和板件受压时必须满足稳定性要求,往往不能充分发挥它的强度高的作用,而混凝土则较适宜于受压不适于受拉,将钢材和混凝土并用,使两种材料都发挥它的长处,是一种和合理的结构。主要构件形式有钢与混凝土组合梁和钢管混凝土柱。
基于超声波无损检测应用
超声波探伤具有高灵敏度、操作简便、探测速度快、成本低且对人体无损伤的优点, 故得到广泛应用。通常情况下面临的焊缝缺陷, 其都能良好检测出来, 其具体应用措施为以下几点。
( 1 ) 在检测前, 首先要了解设计对焊接质量的技术要求。目前钢结构的验收标准是依据GB50205-2001《钢结构工程施工质量验收规范》来执行的。标准规定: 对于设计要求焊缝焊接质量等级为I 级, 评定等级为Ⅱ级时, 规范规定要求做1 0 0 %超声波检测;对于设计要求焊缝焊接质量等级为Ⅱ级, 评定等级为Ⅲ级时, 规范规定要求做2 0 %超声波检测; 对于设计要求焊缝焊接质量等级为Ⅲ级时不做超声波内部缺陷检查。在此值得注意的是超声波检测用于全熔透焊缝, 其检测比例按每条焊缝, 长度的百分数计算,并且不小于200mm。对于局部检测的焊缝,如果发现有不允许的缺陷时: ①应该在该缺陷两端的延伸部位增加检测长度, 增加长度不应小于该焊缝长度的1 0 %且不应小于200mm,当仍有不允许的缺陷时, 应对该焊缝进行1 0 0 %的检测检查; ②应该清楚检测时机, 碳素结构钢应在焊缝冷却到环境温度后, 低合金结构钢在焊接完成2 4 h 以后方可进行焊缝检测检验; ③应该知道待测工件母材厚度、接头型式及坡口型式。截止到目前为止, 本人在实际工作中接到的要求检测的绝大多数焊缝都是中厚板对接焊缝的接头型式, 所以下面主要就对焊缝检测的操作做针对性的总结。一般的母材厚度在8mm~30mm 之间,坡口型式有I 型、单V 型、X 型等几种形式。在弄清楚以上这些数据后才可以进行检测前的准备工作。在每次检测操作前都必须利用标准试块(CSK — IA、CSK —Ⅲ A), 校准仪器的综合性能及检测灵敏度、校准面板曲线, 以保证检测结果的准确性。
( 2 ) 探测面的修整: 应清除焊接工作表面飞溅物、氧化皮、凹坑及锈蚀等, 光洁度一般**V 4 。焊缝两侧检测面的修整宽度一般为2KT+50mm,(K 为探头K 值,T 为工件厚度) 。一般的根据焊件母材选择K 值为2 . 5探头。例如: 待测工件母材厚度为10mm,那么就应在焊缝两侧各修磨100mm, 以保证探头有足够的移动距离。
( 3 ) 耦合剂的选择应考虑到黏度性、流动性、附着力, 对工件表面无腐蚀、易清洗、且经济, 综合以上因素选择浆糊作为耦合剂。
( 4 ) 当母材厚度较薄因此探测方向采用单面双侧进行。
(5)当板厚小于30mm,采用水平定位法或深度定位法来调节仪器的扫描速度。
( 6 ) 在检测操作过程中一般采用粗检测和精检测。为了大概了解缺陷的有无和分布状态、定量、定位就是粗检测。使用锯齿形扫查、左右扫查、前后扫查、转角扫查、环绕扫查等几种扫查方式, 以便于发现各种不同的缺陷并且判断缺陷性质是精检测。
( 7 ) 对检测结果进行记录, 如发现内部缺陷对其进行评定分析。焊接接头内部缺陷分级应符合现行国家标准GB1l345-89《钢焊缝手T超声波检测方法和检测结果分级》的规定, 来评判该焊缝是否合格和评定级别。如果发现有**标缺陷, 向作业人员下达返修通知书, 令其返修后进行复验直至合格。一般的焊缝常见的缺陷有: 气孔、夹渣、未焊透、未熔合和裂纹等。到目前为止, 还没有一个成熟的方法对缺陷的性质进行准确的评判, 只是根据荧光屏上得到的缺陷波的形状和反射波高度的变化结合缺陷的位置和焊接工艺对缺陷进行综合估判。
多层钢结构房屋抗震结构体系钢结构房屋的结构类型直接影响着多层钢结构房屋的抗震性能,因此在进行实际工程设计时,必须综合考虑几种因素,对方案进行优化设计,然后在优化过程中确定较适合本房屋的结构体系。多层钢结构体系有纯钢框架体系、钢框架剪力墙体系、钢框架支撑体系等,它们各有特点,在钢结构建筑领域中被广泛的应用。
3钢结构的破坏形式
多层钢结构房屋具有很多优点,它受到震害的影响要比混凝土结构的房屋要小很多,但设计和施工的要求却同样重要,如果连接、冷加工、焊接不合理,后期维护不当以及受到外部环境、工艺技术的不良影响,很可能会造成钢结构的破坏。根据多层钢结构房屋在历次地震中的破坏形式可以归纳为以下几类。
1、框架节点区的梁柱焊接连接破坏:竖向支撑的整体失稳和局部失稳,柱脚焊缝破坏及锚栓失效。
2、构件的破坏:翼缘的屈曲、拼接处的裂缝、节点焊缝处裂缝引起的柱翼缘层状撕裂、框架柱的脆性断裂、腹板屈曲和截面扭转屈曲。
3、构件的局部屈曲破坏:框架梁或柱的局部屈曲是因为梁或柱在地震作用下反复受弯,以及构件的截面尺寸和局部构造如细长比、板件宽厚比设计不合理造成的,柱的水平断裂是因为地震造成的倾覆拉力较大、动应变速率较高、材性变脆引起的。
4、支撑的破坏:支撑构件为钢结构提供了较大的侧向刚度,当地震强度较大时,承受的轴向力(反复拉压)增加,如果支撑的长度、局部加劲板构造与主体结构的连接构造等出现问题,就会出现钢结构的破坏或失稳。
5、节点破坏:由于节点传力集中、施工难度大、构造复杂,容易造成应力集中、强度不均衡现象,再加上可能出现的构造缺陷、焊缝缺陷,就较容易出现节点破坏。节点域的破坏形式比较复杂,主要有加劲板的屈曲和开裂、加劲板焊缝出现裂缝、腹板的屈曲和裂缝